IS 441 SQL Practice (Subquery; OUTER JOIN; Self Join), 12/04/2015

0. General: Places where subquery may be used
	
	Position of Subquery in SELECT
	Example

	1
	SELECT (Subquery)
	SELECT RestaurantID, (SELECT AVG(SqFt) FROM …)

	2
	FROM (Subquery)
	FROM (Select * FROM… WHERE State=”CA”)

	3
	WHERE Boolean with (Subquery)
	WHERE AnnualSales>(SELECT AVG(AnnualSales) FROM…)

	4
	GROUP BY
	

	5
	HAVING Boolean with (Subquery)
	HAVING AVG(AnnualSales)> (SELECT AVG(AnnualSales) FROM…)

	6
	ORDER BY ;
	

3 and 5 re logically the same – 3 is condition for filtering rows and 5 is condition for filtering groups.

I. Types of subqueries in terms of their positions in the SELECT-Clause
1. SELECT (Subquery)
a. Purpose/occasion: the subquery results will be displayed; or: the desired results cannot be “legally” put in SELECT-clause unless it is a value returned by a subquery.
b. Example: display individual annual sales (row value) and the average sales (set value/aggregate function value).
c. Discussion: in this example,
i. Must do it this way (why)?
ii. The “whole-table average”;
iii. The “by-city average” – involves passing parameters/arguments.
d. Comment: canNOT be accomplished through JOIN or WHERE.
2. FROM (Subquery)
a. Purpose/occasion: the subquery results (dynaset) will be used as the data source for further query.
b. Example: display restaurant IDs and their cities for those restaurants in California.
c. Discussion: in this example,
i. The subset “restaurants in CA” can be obtained
1. Through WHERE which filters all the rows using State=’CA’
2. Through subquery which narrow all records down to those in CA.
d. Comment:
i. In this SPECIFIC example, it doesn’t have to use subquery, just showcase what subquery can do;
ii. In other cases (such as “WHERE EXIST” example in the text) there is no “normal” way in WHERE without subquery. NOT in the final exam
3. WHERE Boolean with (Subquery): This is the most common and most “natural” type of subqueryWill NOT be in final exam

4. WHERE EXIST: This is more complex, and is correlated subquery

II. Results of Subqueries; Arguments/Parameters of Subqueries; Relationships between Main and SUBqueries
1. [Normally] The results of subqueries are not for display but for participation in a Boolean operation.
a. Example: WHERE AnnualSales>(SELECT AVG(AnnualSales) FROM…)
b. If results of a subquery are intended to be displayed, then the subquery must be placed in the SELECT-clause: SELECT RestaurantID, (SELECT AVG(SqFt) FROM …)
c. The outer/main query and the subquery are “two different worlds” – meaning:
i. They can use different sets of tables;
ii. They can involve different sets of fields;
iii. The fields in outer/main query is completely “alien” to those in the subquery, and vice versa;
iv. If we need to “force” the subquery to use the tables in the main/outer query, we need to pass parameters into the subquery
1. Example: “List restaurants whose sales are higher than the AVG of sales in its own city”

III. OUTER JOIN
a. Purpose/occasion: in two related tables, when we want to list all rows in one table (table “A”) no matter whether it has related rows in another (table “B”), that is when OUTER JOIN will be used.
b. Syntax:

	… FROM A LEFT [OUTER] JOIN B
	EVERY row in A, plus the matching B rows

	Or
	

	… FROM B RIGHT [OUTER] JOIN A
	Matching rows in B, and EVERY row in A

Note the comparison of LEFT and RIGHT, with the simultaneous SWITCHING of A & B.
c. Example:
i. all employees and their assigned project, even for those w/o a project
ii. all customers and their order IDs, even for those who haven’t placed an order
iii. STUD LEFT JOIN CAR; or CAR RIGHT JOIN STUD – all students and the matching cars, including the students who do NOT own a car
d. Reminder: do NOT forget the join condition!!!
i. WHERE EMPLOYEE.ProjID = PROJECT.ProjID
ii. ON EMPLOYEE.ProjID = PROJECT.ProjID
iii. USING ProjID
IV. Self Join
a. Purpose/occasion: use one physical table (that is stored as “one piece”) for two logical tables or views.
b. Key points:
i. Define the two logical tables using alias;
ii. Identify the way (the field) the two views are related (PK=FK);
iii. State the join condition;
iv. Do NOT confuse the PK with the FK!
1. “Employee’s manager ID is the same as Manager’s employee ID”
v. Often with other conditions just as in a regular table join.
V. GROUP BY – things to watch
a. Order of clause: first GROUP BY, then HAVING (very basic but…);
b. Row value vs set value (aggregate function use);
c. The values for Boolean operation in HAVING can be
i. A value that has existed for the rows, where …
ii. A value that only exists for the whole group, where…
iii.
===============
Codes from practice:
[The first three questions are 2017; the rest are 2016]

Example 1:
Display the restaurants whose sales are greater than the average sale IN ITS OWN CITY.
Display also tTHAT average (the avg of the whole city where THAT restaurant is in) and give it an alias “CityAVG”
“City AVG”:
[image:]Dec5

	SELECT restaurantID, annualsales
FROM Restaurants
WHERE annualsales >
(SELECT AVG(annualsales)
FROM restaurants
GROUP BY City)
	Road block here:
The subq returns M values, that WHERE is NOT allowed.
Our intention: the subq returns ONE value;
AND ON, specific value, that is –
THE avg of MY city.
But how do we assure that THE city inside the suq is THE city of the current restaurant’s city (as we are processing THE current restaurantID)?
Answer: Passing of parameter – THE city of the CURRENT restaurant is passed INSIDE the subq.

	SELECT restaurantID, City, annualsales
FROM Restaurants Outside_Rest
WHERE annualsales >
(SELECT AVG(annualsales)
FROM restaurants
GROUP BY City
HAVING city= Outside_Rest.City
)
	

 Assures that:
 1) only ONE avg will be returned; AND
 2) THAT AVG is THE AVG of THE city that the current restaurant (in the outer query) is in

	
	[image:]

*** After the codes below that were created in 2015-2016, a new code segment created today (12/05/2017) is on the last page

SELECT restaurantID, annualsales, City,
(SELECT AVG(annualsales) FROM restaurants
WHERE city = My.City
GROUP BY City)
FROM Restaurants AS My
WHERE annualsales > #WHERE is the condition for rows
 (SELECT AVG(annualsales) FROM restaurants
WHERE city = My.City
GROUP BY City)
[image:]

[bookmark: _GoBack]Example 2:
Display the restaurants whose square footage is lower than the average SqFt IN ITS OWN TYPEofservice.
“GangAVG”:

SELECT restaurantID, squarefootage, TypeOfService,
(SELECT AVG(squarefootage) FROM restaurants
WHERE TypeOfService = MyGang.TypeOfService
GROUP BY TypeOfService) AS GangAVG
FROM Restaurants AS MyGang
WHERE squarefootage <
 (SELECT AVG(squarefootage) FROM restaurants
WHERE TypeOfService = MyGang.TypeOfService
GROUP BY TypeOfService)	

[image:]

Example 3:
Display the restaurants whose sales are at least one and a half times the average of the restaurants
By the SAME Francisee. [Last name – from the Franchisees table]
“HiInThePack”:

SELECT restaurantID, annualsales, restaurants.franchiseeID, Lastname
(SELECT AVG(annualsales) FROM restaurants
WHERE franchiseeID = family.franchiseeID
GROUP BY franchiseeID) AS HiInThePack
FROM Restaurants AS family, Franchisees
WHERE family.franchiseeID = franchisees.franchiseeID
AND annualsales >=
1.5*
(SELECT AVG(annualsales) FROM restaurants
WHERE franchiseeID = family.franchiseeID
GROUP BY franchiseeID)

[image:]

Example 4: Self-Join
Attributing the number of orders from employees to their managers
SELECT M.Name, COUNT(orderID)
FROM Employee M, Employee E, [order] O
WHERE E.eID=O.eID
AND E.ManagerID=M.eID
GROUP BY M.Name

[image:]

===
Below are codes from 2015/2016:

SELECT restaurantID, city, annualsales, (select avg(annualsales) from restaurants where city=Maintable.city) AS TotalAvg
FROM Restaurants as MainTable
WHERE AnnualSales>(select avg(annualsales) from restaurants where city=Maintable.city)
order by city;

“SELECT a subset from CA”:
SELECT restaurantID, city
FROM (SELECT * from Restaurants where state='ca');

Dec 5, 2017

HW#6, Prob 5:

SELECT I.itemid, description, orderdate
FROM [order] o, orderitem oi, inventory i
WHERE o.orderid=oi.orderid
AND oi.itemid=i.itemid
AND oi.itemid NOT IN the action of exclusion, from the below:
(SELECT oi.itemid from orderitem oi, [order] o
WHERE o.orderid=oi.orderid those items that appeared in
AND MONTH(orderdate) IN (10,11,12) orders placed among months of 10,11,12
);
We need to completely exclude
THOSE items (i.e., itemIDs)
who appeared in orders that were placed among the months of 10,11,12

Prob #6: Emp who did not seel items in garden shop and during June/July
Idea:
5

image4.png
restaurantiC - squarefoota - | TypeOfService -

Roo0d]
R0004
R0005
R0007
R0009
R0010
Ro011
Ro013

1,000
750
750

1,800

1,000

1,200

1,300

1,800

Table &Take-out
Take-out
Take-out

Table Service
Take-out

Table Service
Table & Take-out
Table Service

GangAVG -
198683888389
1100
1100
1920.33333333
1100
1920.33333333
198688888889
1920.33333333

image5.png
_znnuzlsales - franchiseell - | Lastname - |HilnThePack ~

$876,000 F002 Balchunas. $543,000.00

ST o000 I e e

image6.png
Name -
Joan Switcher
Kaethe Oswald
Katie Hayes

vrwqu

image1.png
‘Restaurantil - Address -~ City - State - Zipcode - Phone - AnnualSales -
2345 SW 98 Street Miami FL 33133~ (305)444-8787 $575,000

image2.png
RO010
RO011
RO016
RO017
RO01S

ity

Orlando
Tallahassee
Gainesville
Miami
Orlando
Northridge
Northridge
santa Monica

ameleles o GRS

$750,000
$800,000
700,000
$750,000
$675,000
$876,000
$888,000
$765,000

$660,000.00
$690,000.00
$590,000.00
$506,250.00
$660,000.00
$696,000.00
$696,000.00
$582,000.00

image3.png
restaurantiC - annualsales - City - CityAVG -

RO001 $575,000 Miami $506,250.00
R0003 $750,000 Orlando $660,000.00
R000S $800,000 Tallahassee | $690,000.00
R0009 $700,000 Gainesville $590,000.00
RO010 $750,000 Miami $506,250.00
RO011 $675,000 Orlando $660,000.00
RO016 $876,000 Northridge | $696,000.00
R0017 $883,000 Northridge $695,000.00

'RO019 $765,000 SantaMonica $582,000.00

